Research

Hybrid materials from synthesis to gas sensing applications

Semiconductor metal oxide (SMO) gas sensors are actually one of the most investigated groups of the gas sensors. They have attracted great attention by many users and scientists interested due to their advantages such as: high sensitivity to pollutant gases, large number of detectable gases, low cost, and small size. Application fields of the SMO materials have been ranging from catalytic and electrochemical processes through optical coatings to gas sensing devices. Recently, the combination of SMO with CNTs has been explored with many interested findings. Various kinds of nanoarchitectures between SMO and CNTs have been made such as CNTs-doped SnO2, CNTs-SnO2 or WO3 composites, and CNTs-coated SnO2. This has motivated us to study nanoarchitectures of SMO and CNTs materials for gas sensing application.

Hybrid materials from synthesis to gas sensing applications

Semiconductor metal oxide (SMO) gas sensors are actually one of the most investigated groups of the gas sensors. They have attracted great attention by many users and scientists interested due to their advantages such as: high sensitivity to pollutant gases, large number of detectable gases, low cost, and small size. Application fields of the SMO materials have been ranging from catalytic and electrochemical processes through optical coatings to gas sensing devices. Recently, the combination of SMO with CNTs has been explored with many interested findings. Various kinds of nanoarchitectures between SMO and CNTs have been made such as CNTs-doped SnO2, CNTs-SnO2 or WO3 composites, and CNTs-coated SnO2. This has motivated us to study nanoarchitectures of SMO and CNTs materials for gas sensing application.

Hybrid materials from synthesis to gas sensing applications

Semiconductor metal oxide (SMO) gas sensors are actually one of the most investigated groups of the gas sensors. They have attracted great attention by many users and scientists interested due to their advantages such as: high sensitivity to pollutant gases, large number of detectable gases, low cost, and small size. Application fields of the SMO materials have been ranging from catalytic and electrochemical processes through optical coatings to gas sensing devices. Recently, the combination of SMO with CNTs has been explored with many interested findings. Various kinds of nanoarchitectures between SMO and CNTs have been made such as CNTs-doped SnO2, CNTs-SnO2 or WO3 composites, and CNTs-coated SnO2. This has motivated us to study nanoarchitectures of SMO and CNTs materials for gas sensing application.

Hybrid materials from synthesis to gas sensing applications

Semiconductor metal oxide (SMO) gas sensors are actually one of the most investigated groups of the gas sensors. They have attracted great attention by many users and scientists interested due to their advantages such as: high sensitivity to pollutant gases, large number of detectable gases, low cost, and small size. Application fields of the SMO materials have been ranging from catalytic and electrochemical processes through optical coatings to gas sensing devices. Recently, the combination of SMO with CNTs has been explored with many interested findings. Various kinds of nanoarchitectures between SMO and CNTs have been made such as CNTs-doped SnO2, CNTs-SnO2 or WO3 composites, and CNTs-coated SnO2. This has motivated us to study nanoarchitectures of SMO and CNTs materials for gas sensing application.